
Methodology

Simulation

Simulation: Transactions of the Society for

Modeling and Simulation International

1–21

� The Author(s) 2022

DOI: 10.1177/00375497221093379

journals.sagepub.com/home/sim

A grid-shaped cellular modeling
approach for wireless sensor networks

Khaldoon Al-Zoubi1 and Gabriel AWainer2

Abstract
WSN (Wireless Sensor Network) applications have been widely used in recent years. We introduce a new method for
modeling WSN, based on the specification of the WSN using the Cell-Discrete-Event Systems Specification (DEVS)
formalism: the space is partitioned into cells where each cell can be considered a sensor, an obstacle, or anything of a
behavior with defined rules. This model is then converted automatically into DEVS model at runtime. We present two
case studies analyzing the use of energy in WSN member nodes, which have impact on prolonging the overall network
lifetime. We study to analyze energy consumption related to routing and data transmission at the node level, and topol-
ogy residual energy control methods at the cluster level (i.e. group of sensors) level. The goal is to show how these spa-
tial modeling methods can be used for building WSN models in a simple but efficient fashion.

Keywords
Modeling and simulation, Cell-Discrete-Event Systems Specification, wireless sensor network, spatial modeling, energy
modeling

1. Introduction

Wireless sensor networks (WSNs) are composed by a group

of wireless nodes (with sensors) distributed over an area to

monitor and collect data from their environment.1,2 WSN

nodes monitor conditions like temperature, health conditions,

intrusion detection, fire detection, and military applica-

tions.1–3 WSN nodes need to discover each other and form a

network on demand, where nodes collect data from the envi-

ronment and route/forward each other data. They need to do

this while dealing with other challenges like limited power

capabilities (i.e. batteries), node failures, and environmental

obstacles. They have been on the rise particularly with the

advent of the Internet of Things (IoTs) era. In this case, sen-

sors collect information from their environment and forward

traffic toward nearby Fogs (i.e. mini clouds near users),4

which might further forward data toward cloud backbone.5

To understand the complexity of such system behavior,

many researchers have turned into Modeling and

Simulation (M&S) to understand issues like energy con-

sumption, routing/forwarding protocols, data collection,

and many others. Accordingly, many M&S environments

have been used to model and simulate WSN such as

Network Simulator (NS-2),6 Java Simulator (J-Sim),7

Operational Network Simulator (OPNET),8 OMNet++
(Modular Network Simulator),9 and DEVS (Discrete-

Event Systems Specification) based simulators.10 In these

M&S tools (as well as in others not listed here), WSN sen-

sors are modeled as a behavioral model (or as a piece of

simulation code, usually written in a high-level program-

ming language or a simulation tool). In most cases, the

network topology is defined by interconnected by the pro-

grammer in using a scripting language, a GUI, etc. Those

scripts usually define the overall topology and the inter-

connection between all behavioral models.

Here, we propose an alternative to the above-discussed

simulators based on the definition of formal models using

Cell-DEVS.10 Cell-DEVS can be used to build grid-shaped

cellular models, allowing allows complex spatial models

to be divided into lattice of cells that only affect a close

neighborhood using a discrete-event approach and explicit

timing delays. Each cell represents an area that contains at

most one WSN node, which affects the entire network via

its neighboring nodes. A WSN model can be built with

1Faculty of Computer & Information Technology, Jordan University of

Science and Technology (JUST), Jordan
2Department of Systems and Computer Engineering, Carleton University,

Canada

Corresponding author:

Khaldoon Al-Zoubi, Faculty of Computer & Information Technology,

Jordan University of Science and Technology (JUST), 3030 Ar-Ramtha,

Irbid 22110, Jordan.

Email: ktalzoubi@just.edu.jo

https://doi.org/10.1177/00375497221093379
https://journals.sagepub.com/home/sim
http://crossmark.crossref.org/dialog/?doi=10.1177%2F00375497221093379&domain=pdf&date_stamp=2022-05-04


simple specifications that can be easily changed to try dif-

ferent configurations or parameters.

To demonstrate WSN modeling using spatial modeling

in Cell-DEVS, we introduce two WSN models focused on

energy management. Energy efficiency has direct impact

on prolonging the overall network lifetime. Simply, the

longer for member nodes to have enough energy to oper-

ate, the longer they stay as part of the overall network.

Accordingly, energy consumption-based models have got

many researchers attention. Briefly, these models attempt

to save energy from a number of factors like tracking data

transmission in sensors (e.g. the literature11–13) routing via

shortest path (e.g. the literature14), and to avoid data colli-

sion (e.g. the literature15). In our discussed two models, we

considered like other works the amount of data transmis-

sion and routing via shortest path (around obstacles). In

addition, we avoid transmission via overloaded sensors to

slow their energy drain. In addition, we show here how to

write and develop those spatial models’ specifications

using Cell-DEVS in terms of their cellular rules and visua-

lization setup. We then discuss the simulation results based

on some selected visualization snapshots. We introduce

the methodology and present different case studies show-

ing the energy efficiency via routing algorithms at the

node level. The model set sensors energy consumption

with respect to data transmission, and it is further extended

at the topology control level (i.e. across multiple clusters)

showing and how the cluster head (CH) tracks energy

within their clusters and route the traffic to other clusters.

The rest of the paper is organized as follows: Section 2

provides background information and related works dis-

cussions. Section 3 provides two Cell-DEVS-based WSN

energy-related models in terms of specifications and visua-

lization results. Conclusions are presented in section 4.

2. Background and related works

WSN are seen as a group of wireless nodes distributed over

an area to monitor and collect data from their environment

and then route this data toward a centralized location to be

analyzed further.1 WSN nodes monitor conditions like tem-

perature, health conditions, intrusion detection, fire detec-

tion, and military applications.1–3 Each wireless node (i.e.

sensor) in the network is usually equipped with a processor,

memory, and power source like batteries or solar cells. In

this ad hoc type of network, sensor nodes need to rely on

themselves for forwarding each other data, hence without

the use of typical routers, as shown in Figure 1. The data

collected from the entire area can then be forwarded via the

Internet to their destination for further analysis.

In this architecture, nodes act as wireless routers to their

neighboring nodes where packets are continuously for-

warded until they reach special nodes called sinks. Sinks

push WSN packets to the external world via typical net-

works like the Internet; hence, sink nodes bridge the WSN

with the external world. Sink nodes are usually equipped

with higher processing power and more advanced technol-

ogies comparing to the regular nodes.

Because WSN can become complex, sensors usually

organized in clusters where each cluster consists of group

of sensors with a special node called CH, as shown in

Figure 2. Each CH collects data from its local group and

communicate with neighboring CH nodes to forward the

data to the outside world. Multiple-cluster architecture still

has sink nodes to forward the data to the external world.

However, it is common for some CH nodes to serve as

sink nodes as well. In this case, they collect data from

their local groups and forward their local and other CH

nodes data to the outside world.

Figure 1. Wireless sensor network (WSN) general architecture.

2 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



In practice, WSN are built on the fly, particularly, when

several sensors are thrown over a geographical area to col-

lect data (e.g. from drones). Thus, energy efficiency is

important requirement to extend the overall network life-

time. However, this requirement is challenging because

sensor nodes have limited power capabilities. The major

energy consumption activity is data forwarding as nodes

not only transmit their gathered data from their environ-

ment but also route other nodes data throughout the net-

work toward sink nodes. Therefore, the closer the nodes

are to the sink nodes, the more data are transmitted and

more energy is consumed. Therefore, WSN routing algo-

rithms usually focus on optimizing the forwarding path to

reduce the number of involving nodes to reduce energy

consumption by the nodes involved, as energy efficiency

is achieved when nodes reduce the amount of data trans-

mitted. Data transmission is affected by obstacles in the

WSN area, which also affects energy consumption of the

WSN nodes.

WSN has recently been modeled and simulated by vari-

ous simulation environments. Obviously, as in the case of

any simulation environment, it places certain rules and

constraints on how to model and simulate a specific sys-

tem. Consequently, an environment technique may ease or

complicate building certain models. The modeler may, for

instance, need to increase the nodes size efficiently and

quickly without introducing human errors. This becomes

obvious in practice if a simulation tool requires the mode-

lers to write the model in some programming language

like C++ and interconnect them in scripts. To be spe-

cific, NS-2 simulator6 uses (e.g. the literature16–19) a Tcl

script to connect all WSN sensors where each sensor is

modeled as NS-2 node. J-Sim7 is like NS-2 (e.g. the litera-

ture20,21) connects sensors (called components and imple-

mented in Java) using Tcl. DEVS-based10 tools model

(e.g. the literature22) sensors as DEVS atomic models writ-

ten in programming languages like C++ or Java, and

then connect those sensors in coupled models. Similarly,

OPNET8 simulate (e.g. the literature11,14,15,23) WSN sen-

sors as OPNET node models (implemented in C) intercon-

nected as OPNET network models. Furthermore,

OMNet++9 simulation environment modeled (e.g. the

literature13,14,24,25) WSN sensors as OMNet++ Simple

module (written in C++) while the network is modeled

as OMNet++ Compound module (defined in a specifica-

tion language called NED). As we can see, these simula-

tion environments define WSN sensors as behavioral units

implemented in some programming language, and then

interconnected with each other in groups that can also be

structured hierarchically. This hierarchical structure is use-

ful for providing scalability in the overall model structure.

However, these approaches place a burden on the modeler

to structure and interconnect those models particularly

when the model structure grows substantially, as in the

case of WSN. This issue can also be seen when the nodes

size is changed in the model, which then requires the

modeler to structure and reconnect the model elements.

This is not a big issue if the model is small, but it can be a

problem if the model contains hundreds or thousands of

nodes.

Based on the above, we now provide an overview of the

simulation environments that have been used to model and

simulate WSN. NS-2 (network simulator)6 is a discrete-

event simulator with the purpose of simulation computer

networks. NS-2 is Unix based and written in C++. It uses

OTcl (Object-oriented Tool Command Language) to con-

figure and setup simulation. In this case, Tcl specifications

are used to build networks and interconnect its elements.

Tcl specifications can then be parsed and simulated by NS-

2 engine to produce simulation results files. The major

parts of a Tcl specification are defining nodes and their

communication links. For example, the following snippet

create two nodes (sensors) and connect them together with

a link of 50 MB bandwidth and 5 ms delay (i.e. $ns is the

Figure 2. WSN multiple clusters architecture.

Al-Zoubi and Wainer 3



simulator instance variable). In this case, within Tcl script,

sensors are defined as nodes and interconnected with links:

set node0 [$ns node]
set node1 [$ns node]
$ns duplex-link $node0 $node1 50Mb 5ms
DropTail

The following summarizes a few examples of NS-2-

based WSN simulation.16–19 Those models focused on rout-

ing protocols, data transmission, and their effect on energy

consumption. The work in Shemim and Witkowski16 stud-

ies various routing protocols effect on energy consumption

using NS-2 simulator like Adaptive Clustering Hierarchy

protocol (LEACH)17 and Fuzzy-based routing protocols.18

The WSN is simulated WSN sensors (i.e. modeled as NS-2

nodes) where the overall network is described in a Tcl

script. The presented work in Accha and Gupta19 studies

MAC protocols performance and energy efficiency in

WSN using NS-2. Different parameters were considered

like packet delivery delay and throughput. The Tcl specifi-

cation builds WSN out of 5 nodes with the following para-

meters: packet size is 512 bytes, Smart Medium Access

Control (SMAC) duty cycle is set to 40, flow interval

between nodes is set to 8 s, and so on. Finally, Awk speci-

fications were used to extract the required information from

the simulation results logs. Furthermore, the authors in

work26 compared Dynamic Source Routing (DSR) and

AdHoc on Demand Distance Vector Routing (AODV) rout-

ing protocols in WSN via NS-2 simulation. The compari-

son was based on packet delivery, end-to-end delay, and

throughput. The authors compared the two algorithms over

two WSN constructions: one consists of 20 nodes while the

other consists of 60 nodes. The overall structures were

described using Tcl specifications.

OPNET8 is an event-driven network simulator that

offers three types of major building blocks: network, node,

and process models. The OPNET network models offer

several objects like subnets, links, and nodes within the

context of a geographical area. Node models represent net-

work elements like servers, workstations, routers, etc.

Those nodes consist of different kind of objects like

queues, transceivers, and processors. Finally, Process

models concern with nodes internal behavior, hence con-

sist of C code, state machines, and state variables. They

mainly concern of modeling algorithms like protocols, sta-

tistics, and queuing policies.

WSN have been simulated in OPNET by representing

WSN sensors as OPNET node behavioral models (imple-

mented in C) that are grouped with OPNET network

model scripts. For example, the work presented in Jun and

YinSong11 models WSN topology structure where line

transmission monitoring is utilized by routing protocols to

consume energy. The sensor is modeled as an OPNET

node that keeps tracking of its distance from the sink

(edge) nodes so that traffic can be routing toward the

sinks. The simulation was conducted using four clusters,

hence with four CH nodes. Furthermore, the work in

Zhang et al.14 uses OPNET to model multi-hop WSN

topology based on their geographical locations by dividing

the entire area with regions centered with base stations.

This was with the purpose of finding nearest location to

consume energy. The model contained 400 OPNET nodes

(sensors) and the geographical area was divided into four

regions. Similarly, the presented work in Alsaif et al.23

uses OPNET to simulate WSN behavior using ZigBee27

protocol where the overall network is divided into various

personal area network (PAN). In this work,23 the area was

divided into three PANs (i.e. modeled as OPNET network)

where each PAN can contain a few mobile nodes and rou-

ters (that were modeled as OPNET nodes). Furthermore,

the work in Gamal et al.15 used OPNET to model and

simulate the collision in WSN when sensors (modeled as

OPNET nodes) wait for restricted backoff periods.

OMNet++9 is a C++ discrete-event simulation

framework mainly used to simulate networks and parallel/

distributed systems. OMNet++ has two types of mod-

ules: Simple and Compound modules. The Simple modules

are written in C++ and use the C++ class library. The

Compound modules group other Simple/Compound mod-

ules (usually defined in a specification language called

NED). Modules communicate with each by the means of

message passing. The simulation results are then written

INI files. In general, WSN basic elements like sensors were

modeled as Simple Modules (in C++) while the topology

of the WSN were modeled as Compound Modules.

The research in Bahbahani and Alsusa12 presents an

OMNet++ based WSN that uses duty cycle based on

data transmission to control energy where CH is alternated

between nodes to consume energy. The network was mod-

eled as an OMNet++ compound module with 100 sen-

sors (modeled as OMNet++ Simple module behavioral

model). This behavioral model was simulated with a

capacity of 3 mAh (initially charged with 5%) where sink

nodes were assumed to be not of an energy constrained.

Similarly, the work in Pegatoquet et al.13 proposed an

MAC protocol to minimize latency and energy consump-

tion. This was done by having a centralized base station

polling all nodes according to a specific interval to coordi-

nate their data packet transmission. The OMNet++
simulation was setup as a single base station with a net-

work with 5–50 node density. Other works like Robinson

et al.24 have increased the simulated OMNet++ nodes to

be 500 nodes. In this work,24 data were aggregated before

transmission in order to consume energy. Further example,

the presented work in Kodali and Malothu25 proposes QoS

method in WSN via controlling some parameters like bit

rate and power adjustment. This system was simulated in

OMNet++ (i.e. MIXIM framework) simulator environ-

ment where the model has deployed 30–100 sensors over

4 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



an area of 500 m 3 500 m. The WSN node (sensor) was

modeled with different communication layers (i.e. applica-

tion, presentation, etc.). In this case, each basic block is

modeled as OMNet++ Simple modules written in

C++. Each group of those blocks is modeled as

OMNet++ Compound modules. The overall network

topology is defined in NED files (that can be viewed gra-

phically) while exchanged messages are defined in C++
in msg files.

DEVS formalism10 is currently implemented by various

simulation environments. DEVS offers two types of mod-

els: the Atomic (Behavioral) model, which is usually writ-

ten in some programming language like C++ or Java,

and the Couple (Structural) model to interconnect other

Atomic/Coupled models.

In general, WSN have been modeled in DEVS by rep-

resenting sensors as DEVS atomic models while the net-

work was represented as DEVS coupled model, while

others represented the sensor as coupled model and the

internal components of sensors like batteries are written as

atomic models. The research in Nam and Kim22 proposes

a framework to model and simulate WSN systems within

DEVS environments. In this framework, there are four

DEVS atomic models: the sensor model (collects and for-

ward data to intermediate sensors), BS model (analyzes

reports received from sensors), GENR model (generates

data randomly), and TRANSD model (handles received

data from both BS and GENR models). These atomic

models can then be interconnected in DEVS coupled mod-

els. In the same way, DEVS-based simulators have mod-

eled other types of wireless networks. For example, the

presented work in Tavanpour et al.28 modeled mobile net-

work using the DEVS-based CD++ simulator.10 In this

work, the top DEVS model (i.e. represents geographical

area) in the hierarchy consists of and connects several

cell-coupled models. Each cell model contains one base

station atomic model with various atomic models, repre-

senting end-user equipment (e.g. mobile phone). The

atomic models are implemented in C++ while the

coupled models are described in textual specifications.

Furthermore, one of the presented models in Tavanpour

et al.28 uses Cell-DEVS to model malware propagation in

WSN based on the pandemic theory. This model is slightly

close to what we are presenting here. However, in our case

here, we focused on energy-related issues in WSN at the

member node level (i.e. within a cluster) and at the topol-

ogy control level (i.e. multiple clusters). Energy efficiency

is essential in prolonging overall WSN lifetime as WSN

sensors usually powered by limited energy source like

batteries.

Java Simulator (J-Sim)7 is a component-based simula-

tor that implemented in Java. J-Sim is built on the top of

both the INET (internetworking framework) and ACA

(autonomous component architecture) simulation tools.7

ACA components interact and communicate with each

other via ports. Components behavior (like the way the

handle received data) is defined in what is called contracts.

Components (i.e. Java classes) are connected during simu-

lation time using Tcl specifications. J-Sim is similar to

NS-2, hence used in a similar way for modeling WSN. In

general, the J-Sim-based WSN simulations modeled WSN

nodes as components where they can interact with each

other via their ports (as defined by Tcl specifications like

NS-2). For example, the work in Sobeih et al.20 proposes a

complete WSN framework on top of J-Sim. This work pro-

vides library for WSN elements like sensors, sink nodes,

etc. These components already implement the WSN proto-

cols in Java, allowing programmers to extend Java classes

in the simulation framework to override behavior (i.e.

WSN protocols). Furthermore, the work in Neves et al.21

extends J-Sim simulator with WSN-specific Graphical

User Interface capabilities to enhance user experience

friendliness. This work helps users to avoid writing Tcl

specifications manually. However, users still need to indi-

vidually configure each WSN node (i.e. J-Sim component)

and its connections with other WSN nodes.

There are more simulators were also built with the pur-

pose of modeling WSN routing protocols like the

graphical-based educational simulation tool for WSNs

(Gbest-WSN).29 This tool was based on MATLAB30 and

was fully dedicated to model WSN routing protocols.

However, it still models WSN as nodes where the user

needs to interconnect them via the GUI. In a similar way,

the presented work in Gupta et al.,31 which built its own

simulator using IPython to simulate WSN system.

As can be seen that these above-discussed environments

simulate WSN sensors as a behavioral unit that implemen-

ted in a programming language, and then interconnected

with each other in groups. The above approaches are struc-

tured to provide scalability; however, it places a burden on

the modeler to structure those models particularly when

the model structure grows. As an alternative, we use Cell-

DEVS10 to model and simulate WSN. Sensors are formally

modeled and then defined as a set of rules where each is

placed in a cell that can communicate with a defined sen-

sors neighborhood. This Cell-DEVS model is executed by

a DEVS engine that understands the formal specifications

and rules. Cell-DEVS combines DEVS formalism10 with a

cell space defined an N-dimension grid where each cell

represents a state of the model and include computing

functions. Each cell affects the overall grid of cells through

a local neighborhood, which is group of cells defined in

relation to a specific cell. Every time there is activity, cells

states are activated and can be updated according to some

function rule. This rule takes into consideration both the

current cell state and the states of cells in its neighborhood.

In Cell-DEVS, each cell is defined as a DEVS atomic

model while a cell space is defined as DEVS coupled

model, and each cell executes a local computing function

to update its new state based on its current state and

Al-Zoubi and Wainer 5



neighboring cells states. Outputs are transmitted after an

explicit delay associated with the current state, as shown

in Figure 3(a). Figure 3(b) shows the case when of neigh-

boring cells in different dimensions.

CD++10 is a simulation environment that implements

DEVS and Cell-DEVS formalism and can execute in dif-

ferent platforms, both locally and remotely.32,33 It provides

a complete specification language to define Cell-DEVS

models. Rules (in the specification) are evaluated by

CD++ in sequence until a rule condition is satisfied,

which accordingly update the cell state variables and com-

municate information throughout the neighborhood after a

specified delay. The rule format is as follows: rule: {Post-

State} {Delay} {Condition}. This means if Condition is

evaluated to true, then the Post-State value is executed,

and after the specified time Delay expression, the output is

transmitted (to the neighbors or other DEVS models).

However, if Condition is evaluated to false, it moves to

the next rule. For example, the following rule ‘‘rule: 2 10

{(0,0) = 0 AND (21,1) = 1}’’ means that if current cell

state is 0 and neighbor cell (21,1) state is 1, then change

current cell state to 2, after a delay of 10.

Defining new models using this method is relatively

simple compared with other traditional methods. The use

of Cell-DEVS also enables integration with other existing

models, permitting to define multi-formalism applications.

An advantage of this approach is that in ad hoc models are

often composed of different subcomponents (for instance,

the routing algorithm and the city topology) interacting

together. We can also make use of existing infrastructure,

including parallel simulators and distributed environments,

and a variety of visual tools. The use of a discrete-event

approach (with a continuous time base) improves precision

and efficiency of the models (as we only react to events in

the model, and if there is no activity, the cells are not

updated). This method also allows to build visualizations

to track the simulation progress of CD++ simulations.

For example, Figure 4(a) shows a visualization example

for a particles diffusion model,10 while Figure 4(b) shows

different stages of a tumor-immune system simulation.10

3. Modeling WSN using Cell-DEVS

This section presents two different Cell-DEVS-based mod-

els that show how to define and study various WSN beha-

viors. The first model (section 3.1) focuses on the energy

consumption problem at the node-level, hence at the level

of data transmission and routing between nodes until data

packets reach sink nodes. This model can be viewed as the

internal behavior of clusters. Similar to other related works

(discussed in section 2), sensors energy is saved via track-

ing data transmission in sensors (e.g. the literature11,12)

and routing via shortest path (e.g. the literature13,14). In

addition, we avoided transmission via overloaded sensors

to slow their energy drain. The second model (section 3.2)

focuses on topology control methods, which use residual

energy; hence, this model is at the level of multiple

clusters.

Figure 3. Cell-DEVS neighborhood concepts: (a) a 2D near
neighbors and (b) 3D complex neighborhood.

Figure 4. Cell-DEVS visualization examples: (a) coastal oil spill and (b) UAV search strategies.

6 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



3.1. WSN routing-related energy consumption
model and simulation

The model in this section studies energy consumption with

respect to nodes data forwarding and routing using a WSN

architecture like the one discussed earlier in Figure 1. This

section first presents a Cell-DEVS model specification (in

section 3.1.1). It then simulates and visualizes the model

with different scenarios (in section 3.1.2).

3.1.1. Model specifications. Each cell represents a geogra-

phical area in the space, which can contain up to one beha-

vioral unit: a regular node, sink node, empty space, or an

obstacle. Regular nodes are sensors that can collect and

forward data toward sink nodes using the shortest path and

data transmission amount to sense overloaded sensors.

These factors are important to consider in order to pre-

serve energy, hence the less work you do, the less energy

to lose. Sink nodes are the edge nodes that receive all data

to be forwarded toward external world. Empty space is a

space that represents open area. Obstacles represent the

blocking areas; hence, traffic needs to be routed around

them.

During the model initialization phase (Figure 5), the

rules initialize the routing tables for each node. Nodes

may also use their neighboring nodes routing information

in building its own tables. For each route in the table, a

pointer to a neighboring node is set alongside alternative

routes. After initialization is completed, data packets are

generated at random time to simulate gathering data from

the environment. Accordingly, packets are forwarded to

neighboring nodes according to the routing tables informa-

tion (i.e. this is modeled by making receiving nodes check

and collect their packets from sending nodes). The total

number of processed and forwarded packets is used to

determine the energy consumption by a node in propor-

tionate with other nodes. This also indicates overloaded

nodes (sensors) that might affect routing through them to

slow their energy drain.

The initialization phase formal Cell-DEVS specification

is shown in Figure 5. As shown in the specification, the

model is defined as 20 3 20 single plane cell space,

defined by ‘‘dim: (20,20),’’ hence, creating 400 cells in the

space. Each cell’s neighborhood contains nine cells,

defined by ‘‘neighbors’’ keyword. Note that upon simula-

tion start, the tools automatically convert all of these cells

into DEVS atomic models and interconnect them with their

applicable neighbors. Each cell uses eight state variables

(keyword ‘‘statevariables’’). These state values may indi-

cate many things like cell type (i.e. intermediate node, sink

node, empty, and obstacle). They also define other infor-

mation like new packets forwarding, routes, energy calcu-

lation based on data transmission, and other visualization-

related values. These states variables will soon be dis-

cussed alongside model rules discussion.

After the initialization phase, each cell (i.e. created as

DEVS atomic model) behaves according to the rules dis-

cussed in the rest of this section. For simplicity, we discuss

those rules in groups.

The first group is shown in Figure 6, initializes the

nodes to be of the type of obstacle node, intermediate

node, or of a sink (receiving) node type where sink nodes

Figure 5. WSN energy model initialization definitions snippet.

Figure 6. First group rules in the WSN model specification.

Al-Zoubi and Wainer 7



are edge nodes, hence forward traffic to the outside world.

This is coded as follows: if current cell is an obstacle/

blocking node (i.e. stEntity is 1), then all routes (i.e. vari-

ables stRoute, stRoute1, and stRoute2) are set to 21 (i.e.

no routing is allowed). Accordingly, this node can also be

viewed as a sleeping node. However, if current cell is a

sink (i.e. stEntity is 2), then all routes are set to 1 (i.e.

route to the external world).

As can be seen in the post-condition part of the two

rules shown in Figure 6, there are two routine macros:

setStatesValues and setPortValue we discuss following in

Figure 7. Macro setStatesValues calculates a cell major

four state variables as follows: stRotation (in the range of

0 through 9) is used to manipulate the rules execution

order; stNewPacket indicates that a cell can receive new

data packets (it is set to 1— true—for nodes in forwarding

mode; otherwise, it is set to 0—false); stPackets is used to

collect packets from neighboring nodes through the desig-

nated routes of those neighbors. It counts the number of

queued packets in a node, which depends on if the cell can

receive packets and the neighboring nodes have also

packets to transmit to this node. Finally, state variable

stEnergy, which represents energy consumption by a node,

is calculated based on the transmitted packets by a node.

This also indicates overloaded nodes, hence, lose energy

at faster rate comparing to other nodes. In this kind of

cases, traffic tries to use alternative routes to reach sink

nodes. The macro setPortValue is used by cells to set ports

default values (unless those values are overwritten by the

actual rules).

Now, if all rules in the first group (in Figure 6) are eval-

uated to false, the simulation moves on to execute the next

rules, shown in Figure 8.

At this point in the rules (Figure 8), nodes are of the

regular type, hence not of an empty, obstacle, or sink type.

Therefore, shortest path routes to sink nodes need to be

established if routes have not already been set. In this case,

if a neighbor’s route is already established, the current

node then points to that neighbor route as a first step to

establish a short path.

To be specific, in Figure 8, the first rule assigns the

main route to point to neighbor (0,1) (if it is already set)

Figure 7. Defined macros in WSN model specification.

Figure 8. Second group rules in the WSN model specification.

8 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



by setting stRoute1 to 2. Otherwise, the second rule assigns

the main route to point to neighbor (21,0) (if it is already

set) by setting stRoute1 to 3. Otherwise, the third rule

assigns the main route to point to neighbor (0,21) (if it is

already set) by setting stRoute1 to 4. Otherwise, the fourth

rule in Figure 8 assigns the main route to point to neighbor

(1,0) (if it is already set) by setting stRoute1 to 5.

Now, if all rules in the second group (in Figure 8) are

evaluated to false, the simulation moves on to execute the

next rules, shown in Figure 9.

The rules in Figure 9 establish current node alternative

route path. This is set to the neighboring node that has a

path that can reach a sink node, hence shortest path to a

sink node. It further ensures that this neighboring node

path does not point back to the current node, hence avoid-

ing loops in the routing paths.

To be specific, the first rule in Figure 9 assigns the

alternative route to point to neighbor (0,1) (if a path

reaches a sink and does not point back to current node) by

setting stRoute2 to 2. Otherwise, the second rule assigns

the alternative route to point to neighbor (21,0) (if path

reaches sink and does not point back to current node) by

setting stRoute2 to 3. Otherwise, the third rule assigns the

alternative route to point to neighbor (0,21) (if path

reaches sink and does not point back to current node) by

setting stRoute2 to 4. Otherwise, the fourth rule in Figure

9 assigns the alternative route to point to neighbor (1,0) (if

path reaches sink and does not point back to current node)

by setting stRoute2 to 5. Finally, the fifth rule is a sanity

check rule to make sure that there are no routing loops. If

a loop is found, it is then removed by updating route val-

ues. It is worth noting that Rule 5 is extremely rare case,

but it is worth a check.

At this point, when the rules shown in Figure 10 are

reached, routing information has already been set for each

node so that they can reach sink nodes via best possible

shortest path. Thus, the rest of the rules are mainly con-

cerned with choosing the best route through a neighbor to

forward packets. Once a route is decided, the packets are

forwarded and the node internal states (e.g. energy con-

sumption) are updated accordingly, as previously dis-

cussed in macro setStatesValues in Figure 7. Routes

selection for forwarding packets is based on energy con-

sumption; hence, the route with lowest energy consump-

tion is selected. In other words, routes with overloaded

nodes can be avoided, if possible, to slow their energy

drain. This provides load balancing throughout the net-

work since energy consumption is computed based on the

amount of transmitted data. This is important because

energy efficiency can prolong nodes expected lifetime.

To be specific, Rules 1–4 (in Figure 10) select a for-

warding path for a packet if a neighboring cell has a reach-

able path to a sink node and the current node has

consumed energy less of that neighboring node. Rule 1

performs this check to neighbor (0,1) while Rules 2, 3,

and 4 performs this check to neighbors (0,21), (21,0),

and (1,0), respectively. However, if Rules 1–4 have evalu-

ated to false, then Rules 5–11 (in Figure 10) try to the find

the best forwarding path by comparing energy consump-

tion between neighboring nodes. Rules 5–6, Rules 6–7,

Rules 7–8, Rules 8–9, Rules 9–10, and Rules 10–11 per-

form energy comparison between neighbors {(0,1) and

(21,0)}, {(0,1) and (0, 21)}, {(0,1) and (1,0)}, {(21,0)

and (0, 21)}, {(21,0) and (1,0)}, and {(0, 21) and (1,0)},

respectively.

Figure 9. Third group rules in the WSN model specification.

Al-Zoubi and Wainer 9



Finally, Rule 12 is evaluated if all previous rules

were evaluated to be false. This does not change

the internal state variables of the current node (cell),

however, the stRotation variable change, which affect

the order of rules execution on the next simulation

cycle.

3.1.2. Model results. The WSN energy model was simu-

lated using CD++10 with the focus on visualization of

the system behavior under various scenarios to study

energy consumption based on data transmission and short-

est path routes to sink nodes. These routes need to avoid

overloaded sensors to slow their energy drain.

Figure 10. Fifth group rules in the WSN model specification.

10 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



Note that we will be discussing next simulation results

from the following three dimensions (while visualizing the

cell type like obstacles, intermediate node, and sink

nodes):

1. The queued packets in nodes, hence, pending to be

forwarded. This is the stPackets state variable in a

node, as previously discussed in Figure 7. The

more the queued packets in a node, the darker the

assigned red color is.

2. The energy consumption by nodes. This is the

stEnergy state variable in a node, as previously dis-

cussed in Figure 7. A darker red color is assigned

when more energy is consumed by a node. Energy

consumption is due to the previously discussed

reasons.

3. The forwarding directions for packets in nodes

(with the attempt to find shortest path while avoid-

ing overloaded nodes). The current forwarding

direction is indicated by state variable stRoute (see

Figures 6–10), which can only be set to one of the

established routes stRoute1 or stRoute2 in the node

routing table, as previously discussed. The cell is

set to blue when stRoute is 1, which means a sink

node. The cell is set to red when stRoute is 2,

which means forwarding into the right direction.

The cell is set to yellow when stRoute is 3, which

means forwarding into the upward direction. The

cell is set to green when stRoute is 4, which means

forwarding into the left direction. The cell is set to

pink when stRoute is 5, which means forwarding

into the downward direction. The cell is set to

black when stRoute is 21, which means blocking

node, hence, obstacle in the network.

The rest of this section presents various simulation scenar-

ios, which are simulated and presented to users by visuali-

zation. In these results, we selected a few snapshots of

those scenarios visualization to be presented here.

3.1.2.1. First case scenario. Figure 11 shows the snap-

shots for the first case scenario. In this case, the WSN has

Figure 11. Simulation snapshots for WSN with single sink node and without obstacles: (a) forwarding directions (sink on corner),
(b) queued packets (sink on corner), (c) energy consumption (sink on corner), (d) forwarding directions (sink in middle), (e) queued
packets (sink in middle), and (f) energy consumption (sink in middle).

Al-Zoubi and Wainer 11



only one sink node to route traffic to the outside world.

Furthermore, all cells in this case are acting as regular

member nodes, which means that they can forward and

route packets toward the sink node; hence, no obstacles

exist in the network.

The top three snapshots in Figure 11 place the only sink

node in the network on the top-left corner of the cell space,

hence, the blue cell in Figure 11(a). Figure 11(a) shows the

forwarding directions state for all nodes at time 80. As can

be seen that cells are trying to reach the sink node by for-

warding packets either toward their left (green) or toward

their upward (yellow) directions. Figure 11(b) shows the

number of pending packets for all nodes at time 80. The

figure shows that most packets are queued in nodes close

to the sink node (i.e. as shown by the darker red colored

cells). Figure 11(c) shows the energy consumption map for

all nodes at time 80. This figure clearly shows that the

closer a node gets to the sink, the more energy it consumes

(i.e. the darker the red color get). This makes sense since

nodes closer to the sink node would drain more energy

since they transmit and route more data than the far away

nodes.

The above argument is further revealed in the bottom

three snapshots in Figure 11. In this case, the single sink

node is moved into the middle position; hence, it is shown

as the blue cell in Figure 11(d). As shown the forwarding

directions map (in Figure 11(d)), all of the nodes are for-

warding toward the sink node in the middle {left (green),

right (red), upward (yellow), and downward (pink)}. This

also shown with the queued packets in nodes in Figure

11(e): nodes around the sink node area are queuing high

volume of packets (i.e. darker red color). However, nodes

that far away from the sink node can still queue packets at

certain times. This means that those nodes are happened to

be placed in an area with more data to collect at that time.

Figure 11(f) shows that the closer a node gets to the mid-

dle (i.e. to the sink node), the more energy it consumes

(i.e. shown as cells with darker red color). This is because

nodes closer to the sink node route and transmit high vol-

ume of data, which consume more energy.

3.1.2.2. Second case scenario. Figure 12 shows the snap-

shots for the second case scenario. In this case, the WSN

uses multiple sink nodes to route traffic to the outside

world. Furthermore, all cells in this case are acting as reg-

ular nodes, which means that they can forward and route

packets toward the sink nodes, hence no obstacles present

in the network.

The top three snapshots in Figure 12 employ three sink

nodes in the network where two of them placed on the top

corners and the third one is placed in the middle-bottom

row, as shown by the blue cells in Figure 12(a). Figure

12(a) shows the forwarding directions state for all nodes at

time 80. As can be seen in Figure 12(a) that nodes are for-

warding packets toward their closest sink node.

Accordingly, nodes close to left-top corner sink node for-

ward packets into the left (green) and upward (yellow)

directions. Similarly, nodes close to the top-right corner

sink node forward packets into the right (red) and upward

(yellow) directions. However, nodes in the bottom half

forward packets to the middle-bottom sink node from dif-

ferent directions: downward (pink), right (red), and left

(green) directions. Figure 12(b) shows the number of

pending packets for all nodes at time step 80. The figure

shows that most packets are queued in nodes close to the

three sink nodes (i.e. as shown by darker red colored

cells). Figure 12(c) shows the energy consumption map

for all nodes at time 80. This figure clearly shows that the

closer a node gets to a sink node, the more energy it con-

sumes (i.e. the darker the red color get). This makes sense

since nodes closer to the sink node would transmit and

route more data than the far away nodes.

The above argument similarly applies to the three mid-

dle snapshots shown in Figure 12, which use four sink

nodes where each is placed on a different corner. Figure

12(d) shows that nodes in each quarter of the cell space

are forwarding packets to the sink node (i.e. shown in

blue) that is placed in the corner closer to them. Figure

12(e) shows that most packets are currently queued in

nodes closer to the corners (sink nodes). Furthermore,

energy consumption is mostly occurring closer to the cor-

ners (Figure 12(f )), in a similar way to previous cases.

However, this case has shown better energy efficiency for

nodes located away from the corners.

However, the three bottom snapshots in Figure 12 show

more interesting case. In this case, the four sink nodes are

strategically positioned as square in the middle of the cell

space, as shown by the blue cells in Figure 12(g). Figure

12(g) shows that most nodes can now reach sink nodes

quicker than previous cases. This is clearly shown in

Figure 12(h) where only low number of packets that get

queued even with nodes around the sink nodes. This load

balancing has improved energy efficiency in nodes as

shown in Figure 12(i); hence, energy is mostly consumed

by a few nodes around the sink nodes.

3.1.2.3. Third case scenario. The snapshots (at time step

80) in Figure 13 show the third case scenario. This case

introduces obstacles in the network. Obstacles are mod-

eled as cells (i.e. shown in black) without the capability of

receiving or forwarding packets, hence packets then need

to be routed around those obstacles to reach the sink

nodes.

The top snapshots in Figure 13 show the case when one

sink node is severely surrounded by obstacles. Figure 13(a)

shows how nodes route to the sink node (i.e. blue cell)

through the narrow top opening area. Figure 13(a) shows

that bottom nodes mostly forward upward (yellow) while

nodes near obstacles forward right (red) or left (green) to

go around the obstacles. However, top nodes forward right

12 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



(red) or left (green) to find the narrow opening. However,

nodes forward downward (pink) when the narrow opening

area is found. Furthermore, most packets get queued near

the narrow opening area, as shown by the darker red cells

in Figure 13(b). Those nodes near the narrow opening area

also consumed most energy, as shown by the darker red

cells in Figure 13(c).

The same above argument also applies to the middle

snapshots shown in Figure 13. This case shows obstacles

built in a form of walls while using three sink nodes (i.e.

blue cells in Figure 13(d)). Figure 13(d) shows how nodes

route through the shortest path (around the obstacles) to

reach its closest sink node (e.g. nodes forward to left (i.e.

green) and upward (i.e. yellow) to reach left-top sink

Figure 12. Simulation snapshots for WSN with multiple sink nodes and without obstacles: (a) forwarding directions (three sink
nodes), (b) queued packets (three sink nodes), (c) energy consumption (three sink nodes), (d) forwarding directions (sinks on
corners), (e) queued packets (sinks on corners), (f) energy consumption (sinks on corners), (g) forwarding directions (sinks in
middle), (h) queued packets (sinks in middle), and (i) energy consumption (sinks in middle).

Al-Zoubi and Wainer 13



node). Figure 13(e) shows that most packets get queued

around the sink nodes; hence, cells have darker red colors.

Those nodes that surround the sink nodes also consume

most energy (Figure 13(f)), as they do most data

transmissions.

The bottom three snapshots in Figure 13 show more

realistic case scenario. In this case, obstacles (i.e. black

cells) are randomly placed in the network. Furthermore,

four sink nodes are strategically placed in the network,

hence shown as the blue cells in Figure 13(g). Figure 13(g)

shows how the nodes forward packets around obstacles to

reach their closest sink nodes, hence forwarding is per-

formed in all directions to go around those obstacles: green

(left), red (right), yellow (upward), and pink (downward).

Figure 13. Simulation snapshots for WSN with obstacles: (a) forwarding directions (bad blocking), (b) queued packets (bad
blocking), (c) energy consumption (bad blocking), (d) forwarding directions (blocking walls), (e) queued packets (blocking walls),
(f) energy consumption (blocking walls), (g) forwarding directions (random blocking), (h) queued packets (random blocking), and
(i) energy consumption (random blocking).

14 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



This led to better load balancing as shown by the low num-

ber of queued packets in Figure 13(h). This also shown by

low energy consumption even by the nodes located around

the sinks. This case clearly shows that carful placing of

sink nodes can lead to better load balancing, which accord-

ingly can lead to better energy efficiency, hence this would

extend wireless nodes operating life in the WSN. The

model shows that placing sink nodes strategically can

improve data transmission distribution between nodes,

hence improves energy efficiency.

3.2. WSN topology control energy M&S

The model in this section studies energy consumption at

higher level, hence topology control method (using the

WSN architecture previously discussed in Figure 2). In

this model, nodes are organized in groups (called clusters).

Each group selects one node, called CH, to communicate

with other neighboring groups CH nodes. The model then

controls energy consumption at the level of groups rather

than at individual nodes themselves.

3.2.1. Model specifications. The topology control model is

written in Cell-DEVS specification language and simulated

by the CD++ tool. The model is defined as 20 3 20

single plane cell space; hence, the model is assembled out

of 400 DEVS atomic models since each cell is a separate

DEVS atomic model. Model size can easily be changed

without extra burden of the modeler. The neighborhood in

this model is defined in groups (clusters) where each group

contains a CH node to collect data from its group and to

communicate with neighboring CH nodes as explained

next in Figure 14.

Figure 14 (right) shows the neighborhood definition in

the Cell-DEVS specification language. The specification

simply lists all cells from cell (24,24) to cell (4,4) in the

neighborhood (i.e. this neighborhood space is visualized in

Figure 14 (left)). The 81 cells in the neighborhood are

divided into nine groups where each group has one CH

node, placed in the middle as shown in Figure 14 (left).

For example, the top-left cluster (in Figure 14 (left)) is

defined by the square with corners of (24,24), (24,22),

(22,24), and (22,22) cells. In this way, each CH node

Figure 14. Topology control model neighborhood definition.

Al-Zoubi and Wainer 15



has eight neighboring regular nodes within its cluster. It

further has eight neighboring clusters; hence, it has eight

CH neighbors since CH nodes act as surrogates for their

clusters. Thus, the CH node shown at location (0,0) in

Figure 14 (left) has eight CH neighbors located at

(23,23), (23,0), (23,3), (0,23), (0,3), (3,23), (3,0), and

(3,3). It is worth to note that during simulation each cell in

the entire space treat itself as cell (0,0) when dealing with

its neighborhood. Thus, each CH node sees its neighbor-

hood in the same shown manner in Figure 14 (left).

As previously mentioned, Cell-DEVS uses state vari-

ables to store information in each cell, which play major

role in defining cells behavior during simulation. The

topology control model defines eight state variables: the

node type (e.g. CH node and regular node), node residual

energy, and node current communication operation (e.g.

sending and receiving). Each of those values is also

assigned a color to be used during simulation visualiza-

tion. State variable Values (0–2) define residual energy

levels for regular nodes while Values (3–8) define differ-

ent state values for CH nodes. Value 3 (red color) indi-

cates an active CH node, which means a switched-on node

that can communicate with neighboring CH nodes, but not

transmitting messages yet. Value 4 (black color) indicates

an idle CH node, hence switched off to save energy. Value

5 (green color) indicates a CH node is being in the process

of message transmission, hence data collected from its

local group. Value 6 (purple color) indicates a CH node

that is currently forwarding a message (which was origi-

nally sent by another CH) toward its destination CH.

Value 7 (yellow color) indicates a CH node is currently

acknowledging a received message. Value 8 (gray color)

indicates message destination CH; hence, message is then

forwarded by this node to the outside world.

The model starts with cell space initialization to place

CH nodes. The placement of CH nodes in the space can

vary from a use case scenario to another. For example,

Figure 15 places 36 active CH nodes in the space. The

Cell-DEVS specification (Figure 15 (left)) places each

active CH node (i.e. Value 3) in the desired position of the

desired rows. Of course, CH nodes initial values (e.g. idle

and sending) can vary depending on the used case scenario.

It is worth noting that each of those CH nodes defines its

neighborhood as previously discussed in Figure 14 (left).

After initialization phase, the internal simulation beha-

vior is triggered in each node according to a set of rules.

With each simulation cycle, rules are executed in order

until one of those rules condition is satisfied. The first set

of those rules is shown in Figure 16. Figure 16 (right)

shows the Cell-DEVS specification snippet while Figure

16 (left) shows the conceptual flow of those rules. The

focus of those rules is to control the duty cycle at the

topology level to achieve better energy conservation. The

idea is to decide when to turn off a CH node (and hence its

local cluster) and to decide when to turn it back on. This is

done as follows (Figure 16): the first rule sets energy level

to random value, if the current node is a regular one.

Otherwise, this node is CH, hence CD++ simulator

moves on executing the next rules in the specification.

Rules 2, 3, and 4 (in Figure 16) only deal with CH nodes

that are in the IDLE or ACTIVE states. Thus, if current

CH is in a different state from those two, the simulator

moves onto executing the next rules (will soon be dis-

cussed in Figure 17). Rules 2 and 3 set current CH node to

IDLE if all of the followings are true: (1) current CH is

ACTIVE or IDLE, and (2) has at least two CH neighbors

in communication mode (i.e. state value ø 5), and (3) the

average residual energy in the neighboring clusters is

higher than the residual energy in the current CH local

cluster. Finally, Rule 4 turns on current CH node (1) if the

current is in IDLE state and (2) the average residual energy

in the neighboring clusters is less than the residual energy

in the current CH local cluster. Otherwise, the simulator

moves onto executing the next rules shown in Figure 17.

The next rules are the communication rules (Figure 17)

to mainly manage CH message exchanging states. Note

Figure 15. Topology control model initialization example.

16 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



that these rules could be changed to study different use

cases scenarios, as desired. Figure 17 shows an example

of CH message exchanging rules. Rules 5–10 (in Figure

17) summarized as follows: CH node becomes in Sending

Message state (i.e. Value 5) when it has a message to send.

This message represents collected data from the sender

CH local neighborhood. CH in Active state becomes in

Forwarding Message (i.e. Value 6) if it gets a message

from a neighbor in the Sending Message state or in the

Forwarding Message state. CH in the Receiving message

state (i.e. Value 8) becomes Active when it receives the

message. This represents message being forwarded outside

the WSN. CH becomes in the Acknowledging Message

state (i.e. Value 7) if it gets an ACK from a neighbor in

the Receiving Message state or in the Acknowledging

Message state. CH in Sending Message state (i.e. Value 5)

becomes Active (i.e. Value 3) when it gets an ACK from a

neighbor CH. Rules 11–13 (in Figure 17) do not change a

CH node state if there are no communicating neighbors

and this CH in one of the following states: Sending

Message, Forwarding Message, or Receiving message

state. Finally, if all above rules are evaluated to false, the

default rule (i.e. Rule 14 in Figure 17) always puts the CH

node into the Active state.

3.2.2. Model results. The topology control model was simu-

lated using CD++ with the focus on observing CH nodes

behavior from their neighborhood perspectives.

For example, Figure 18(a) shows a simulation results

snapshot at time 00:00:05:00. As can be seen, the CH node

in the middle of the green rectangle is active (red), hence it

is currently turned on. The eight neighboring CH nodes are

shown on the green rectangle borders. Some of those

neighbors are active (red) while others are idle (black).

Now when the rules (discussed in Figure 16) are executed

for the CH node in the middle of the green rectangle, it

first finds out that it has more than two active CH neigh-

bors. It then calculates the average residual energy for the

CH neighbors to be 1.0625 while the residual energy for

the local neighborhood (i.e. nodes inside the green rectan-

gle) is calculated to be 0.375. Based on this, the topology

control method turns this CH node off, which is shown as

black (idle) cell in the simulation next step (in Figure

18(b)). The simulation was executed with various scenar-

ios by placing CH senders and receivers on different posi-

tions. However, since those scenarios have shown similar

results, it should be sufficient to show only one scenario

here. In this scenario, one CH is collecting data from its

local neighborhood (i.e. the sensors in its cluster). This

sender CH is the top-left green cell in Figure 19(a) while

the receiver CH node is the right-bottom gray cell in

Figure 19(a). The sender CH node data are continuously

forwarded via middle CH nodes until data reach the receiv-

ing (destination) CH node. Figure 19(b) snapshot shows

when the sender CH sends its first message via one of its

Figure 16. Topology energy control cycle rules.

Figure 17. CH messaging rules example.

Al-Zoubi and Wainer 17



CH neighbors. This CH neighbor (Figure 19(b)) is shown

in purple color cell, hence in forwarding state. Figure

19(b) also shows CH local neighborhoods with different

random residual energy levels. It further shows that many

CH nodes have been turned off (i.e. black cells) to save

energy as part of the topology control method. Figure

19(c) snapshot shows that more CH nodes are involved in

forwarding messages (i.e. purple cells) between the sender

Figure 18. Simulation snapshots example: (a) simulation results (first step) and (b) simulation results (next step).

Figure 19. Simulation messages transmission scenario example: (a) initial states, (b) initial sending/forwarding, (c) during sending/
forwarding, (d) complete message receipt, and (e) complete message acknowledgment.

18 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



and the receiver CH nodes. Figure 19(d) snapshot shows

the step when the receiver CH has acknowledged the

received message via one of its CH neighbors. As a result,

the figure shows that the original receiver is now in the

active state (i.e. red color) while the CH neighbor that is

currently forwarding the ACK back to the sender CH is in

the acknowledgment state (i.e. yellow color). Figure 19(e)

snapshot shows that the sender CH has received the last

ACK, hence changed state to active (i.e. red color). This

figure shows that many CH nodes have been turned off

(i.e. black cells) to save energy while others still turned on

(i.e. red cells) to be able to communicate in the future if

needed. The figure also shows that some CH nodes still

forwarding ACKs (i.e. yellow cells). This represents dupli-

cate ACKs that will be ignored by the sender CH.

4. Conclusion

WSN applications have been widely used in recent years,

in particular with the advent of Internet of Things (IoTs),

which in many cases need to detect and collect information

from environments. Regardless of the used M&S environ-

ment (e.g. NS-2, J-Sim, OPNET, and OMNet++), WSN

sensors are usually defined as a behavioral model (or a

simulation component usually written in a programming

language) while the network is defined as a collection of

interconnected nodes using a scripting language, a GUI,

etc. We presented an alternative method for modeling

WSN, based on the formal specification of the WSN using

the Cell-DEVS formalism: the space is partitioned into

cells where each cell can be considered a sensor, an obsta-

cle, or anything of a behavior with defined rules. These

models consider the spatial location of the nodes, making

it useful for spatial analysis of the system under study. We

further showed how those models could be simulated and

visualized. The models covered energy-related issues at

the sensor (node) level and when sensors organized in mul-

tiple clusters. We considered energy consumption to be

related to amount of data being transmitted, which affect

the routing protocols to use shortest path to reach sink

nodes while trying to avoid overloaded nodes. The simula-

tion results that placing major nodes like sink and CH

nodes strategically can improve energy efficiency in WSN,

hence prolong its lifetime.

Acknowledgements

The authors want to acknowledge the participation of various stu-

dents who developed some of the models presented here, includ-

ing M. Shabani and V. Soto. The complete models with original

source code can be found at https://cell-devs.sce.carleton.ca/med-

iawiki/index.php/Model_Samples.

Funding

The author(s) disclosed receipt of the following financial support

for the research, authorship, and/or publication of this article:

This research was partially funded by the NSERC, Natural

Sciences and Engineering Research Council of Canada.

ORCID iDs

Khaldoon Al-Zoubi https://orcid.org/0000-0001-6194-3449

Gabriel A Wainer https://orcid.org/0000-0003-3366-9184

References

1. Ullo SL and Sinha GR. Advances in smart environment mon-

itoring systems using IoT and sensors. Sensors 2020; 20:

3113.

2. Fu X, Yao H, Postolache O, et al. Message forwarding for

WSN-assisted opportunistic network in disaster scenarios. J

Netw Comput Appl 2019; 137: 11–24.

3. Fu X, Yao H and Yang Y. Cascading failures in wireless sen-

sor networks with load redistribution of links and nodes. Ad

Hoc Netw 2019; 93: 101900.

4. Yi S, Li C and Li Q. A survey of fog computing: concepts

applications and issues. In: Proceedings of the 2015 work-

shop mobile big data, Hangzhou, China, 21 June 2015.

5. Al-Zoubi K and Wainer G. Fog and cloud collaboration to

perform virtual simulation experiments. Simul Model Pract

Th 2020; 101: 102032.

6. Network Simulator (NS-2), https://www.isi.edu/nsnam/ns/

(accessed 5 January 2022).

7. Java Simulator (J-Sim), https://www.kiv.zcu.cz/j-sim/ (accessed

23 April 2022).

8. OPNET network simulator, https://opnetprojects.com/opnet-

network-simulator/ (accessed 5 January 2022).

9. OMNet++ simulator, https://omnetpp.org/ (accessed 5

January 2022).

10. Wainer GA. Discrete-event modeling and simulation: a prac-

titioner’s approach. Boca Raton, FL: CRC/Taylor & Francis,

2009.

11. Jun L and YinSong W. Gradient-based clustering routing

algorithm for EH-WSN in transmission line monitoring. In:

Proceedings of the 39th Chinese control conference (CCC),

Shenyang, China, 27–29 July 2020.

12. Bahbahani MS and Alsusa E. A cooperative clustering proto-

col with duty cycling for energy harvesting enabled wireless

sensor networks. IEEE T Wirel Commun 2018; 17: 101–111.

13. Pegatoquet A, Le TN and Magno M. A wake-up radio-based

MAC protocol for autonomous wireless sensor networks.

IEEE ACM T Network 2019; 27: 56–70.

14. Zhang D, Wang Y, Lv Y, et al. A cluster head multi-hop

topology control algorithm for WSN. In: Proceedings of the

2019 IEEE 2nd international conference on computer and

communication engineering technology (CCET), Beijing,

China, 16–18 August 2019.

15. Gamal M, Sadek N, Rizk M, et al. Markov model of modi-

fied unslotted CSMA/CA for wireless sensor networks. In:

Al-Zoubi and Wainer 19



Proceedings of the 31st international conference on micro-

electronics (ICM), Cairo, 15–18 December 2019.

16. Shemim KSF and Witkowski U. Energy efficient clustering

protocols for WSN: performance analysis of FL-EE-NC with

LEACH, K Means-LEACH, LEACH-FL and FL-EE/D using

NS-2. In: Proceedings of the 32nd international conference

on microelectronics (ICM), Aqaba, Jordan, 14–17 December

2020.

17. Shemim KSF and Witkowski U. Energy efficient clustering

protocols in WSNs: performance analysis and comparison of

EEAHP protocol with LEACH and EAMMH using

MATLAB. In: Proceedings of the 2020 advances in science

and engineering technology international conferences

(ASET), Dubai, United Arab Emirates, 4 February–9 April

2020.

18. Abbas SH and Khanjar IM. Fuzzy logic approach for cluster-

head election in wireless sensor network. Int J Eng Res Adv

Technol 2019; 5: 14–25.

19. Accha V and Gupta SH. Performance analysis of Wireless

Sensor Network MAC protocols using NS-2. In: Proceedings

of the 2018 international conference on computing, power

and communication technologies (GUCON), Greater Noida,

India, 28–29 September 2018.

20. Sobeih A, Hou JC, Kung L-C, et al. J-Sim: a simulation and

emulation environment for wireless sensor networks. IEEE

Wirel Commun 2006; 13: 104–119.

21. Neves PACS, Veiga IDC and Rodrigues JJPC. G-JSIM—a

GUI tool for Wireless Sensor Networks simulations under J-

SIM. In: Proceedings of the 2008 IEEE international sympo-

sium on consumer electronics, Vilamoura, 14–16 April 2008.

22. Nam SM and Kim HJ. WSN-SES/MB: system entity struc-

ture and model base framework for large-scale wireless sen-

sor networks. Sensors 2021; 21: 430.

23. Alsaif O, Saleh I and Ali D. Evaluating the performance of

nodes mobility for Zigbee Wireless Sensor Network. In:

Proceedings of the 2019 international conference on com-

puting and information science and technology and their

applications (ICCISTA), Kirkuk, Iraq, 3–5 March 2019.

24. Robinson Y, Krishnan RS, Narayanan KL, et al. Hybrid data

forwarding technique for enhanced lifetime in Wireless

Sensor Networks. In: Proceedings of the 5th international

conference on trends in electronics and informatics (ICOEI),

Tirunelveli, India, 3–5 June 2021.

25. Kodali RK and Malothu VK. MIXIM framework simulation

of WSN with QoS. In: Proceedings of the 2016 IEEE inter-

national conference on advanced communication control

and computing technologies (ICACCCT), Ramanathapuram,

India, 25–27 May 2016.

26. Kashyap VK, Astya R, Nand P, et al. Comparative study of

AODV and DSR routing protocols in wireless sensor net-

work using NS-2 simulator. In: Proceedings of the 2017

international conference on computing, communication and

automation (ICCCA), Greater Noida, India, 5–6 May 2017.

27. ZigBee cluster library user guide, https://www.nxp.com/

docs/en/user-guide/JN-UG-3077.pdf (accessed 7 January

2022).

28. Tavanpour M, Kazi BU and Wainer G. Discrete event sys-

tems specifications modelling and simulation of wireless net-

working applications. J Simul 2022; 16: 1–25.

29. Sabor N, Sasakia S, Abo-Zahhad M, et al. A graphical-based

educational simulation tool for Wireless Sensor Networks.

Simul Model Pract Th 2016; 69: 55–79.

30. Valentine DT and Hahn B. Essential MATLAB for engineers

and scientists. 7th ed. Amsterdam: Elsevier, 2019.

31. Gupta S, Mittal M and Padha A. Predictive analytics of sen-

sor data based on supervised machine learning algorithms.

In: Proceedings of the 2017 international conference on next

generation computing and information systems (ICNGCIS),

Jammu, India, 11–12 December 2017.

32. Al-Zoubi K and Wainer G. Distributed simulation of DEVS

and Cell-DEVS models using the RISE middleware. Simul

Model Pract Th 2015; 55: 27–45.

33. Al-Zoubi K and Wainer G. Mobile experimentation using

modelling and simulation in the Fog/Cloud. J Simul. Epub

ahead of print 20 August 2021. DOI:

10.1080477778.2021.1964393.

Author biographies

K.A.-Z. received both PhD (2011) in Electrical and

Computer Engineering and MCS (2006) from Carleton

University (Ottawa, ON, Canada). He received a BSc in

Electrical and Computer Engineering (1995) from the

University of Louisiana at Lafayette (Lafayette, LA,

USA). Before joining the faculty of Computer Information

Technology at the Jordan University of Jordan (JUST) as

assistant professor in 2016, he worked for more than

20 years as a Senior Software Engineer, Developer,

Researcher, and Inventor in leading hi-tech companies

(e.g. Huawei, BlackBerry, and Nav Canada) in Canada

and the United States. During his industry experience, he

had full hands-on involvement in generating patents (for

real-world products) and in architecting, designing, and

developing wide range of software solutions that have

been used by hundreds of millions of people around the

world. This industry experience and products have cov-

ered different fields mainly in networking, 5G-based Data

centers, Software Defined Networks (SDNs), large-scale

Cloud Computing, embedded software, Real-Time

Systems, Graphical User Interface (GUI), Device Drivers,

Client/Server communication, QNX/Linux, Explosives/

Narcotics detections, and air-traffic communication sys-

tems. In addition, his academic research has been involved

in Fog and Cloud Computing, Cloud-based Modeling and

Simulation as services, Mobile Computing, Wireless and

Networking protocols, Web-services, and Parallel and

Distributed Simulation, and Cyber Security.

G.A.W., FSCS, received the MSc (1993) at the

University of Buenos Aires, Argentina, and the PhD

(1998, with highest honors) at UBA/Université d’Aix-

Marseille III, France. In July 2000, he joined the

Department of Systems and Computer Engineering at

Carleton University (Ottawa, ON, Canada), where he is

now Full Professor. He has held visiting positions at the

20 Simulation: Transactions of the Society for Modeling and Simulation International 00(0)



University of Arizona; LSIS (CNRS), Université Paul

Cézanne, University of Nice, INRIA Sophia-Antipolis,

Université de Bordeaux (France); UCM, UPM, UPC

(Spain), University of Buenos Aires, National University

of Rosario (Argentina), and others. He is one of the foun-

ders of SIMUTools, ANNSIM (SCS/IEEE/ACM), the

Symposium on Theory of Modeling and Simulation (SCS/

ACM/IEEE), and Symposium on Simulation in

Architecture and Urban Design—SimAUD (SCS/ACM/

IEEE). Professor Wainer is Editor in Chief of

SIMULATION, member of the Editorial Board of Journal

of Simulation, IEEE Computing in Science and

Engineering, Wireless Networks and Journal of Defense

Modeling and Simulation (SCS). He is the head of the

Advanced Real-Time Simulation lab, located at Carleton

University’s Centre for advanced Simulation and

Visualization (V-Sim). He has been the recipient of vari-

ous awards, including the IBM Eclipse Innovation, SCS

Leadership, and various Best Papers. He has been awarded

Carleton University’s Research Achievement Award

(2005 and 2014), the SCS Outstanding Professional

Award (2011), Carleton University’s Mentorship Award

(2013), the SCS Distinguished Professional Award (2013),

the SCS Distinguished Service Award (2015), Nepean’s

Canada 150th Anniversary Medal (2017), ACM

Recognition of Service Award (2018), and IEEE Outstanding

Engineering Award (Ottawa Section—2019). He is an ACM

Distinguished Speaker and a Fellow of SCS.

Al-Zoubi and Wainer 21


